Oscillation criteria of fractional differential equations

نویسنده

  • Da-Xue Chen
چکیده

where D−y is the Liouville right-sided fractional derivative of order a Î (0,1) of y and h >0 is a quotient of odd positive integers. We establish some oscillation criteria for the equation by using a generalized Riccati transformation technique and an inequality. Examples are shown to illustrate our main results. To the best of author’s knowledge, nothing is known regarding the oscillatory behavior of the equation, so this article initiates the study. MSC (2010): 34A08; 34C10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation of a Class of Fractional Differential Equations with Damping Term

We investigate the oscillation of a class of fractional differential equations with damping term. Based on a certain variable transformation, the fractional differential equations are converted into another differential equations of integer order with respect to the new variable. Then, using Riccati transformation, inequality, and integration average technique, some new oscillatory criteria for...

متن کامل

Interval Oscillation Criteria For A Class Of Nonlinear Fractional Differential Equations

In this work, some new interval oscillation criteria for solutions of a class of nonlinear fractional differential equations are established by using a generalized Riccati function and inequality technique. For illustrating the validity of the established results, we also present some applications for them. Key–Words: Oscillation; Interval criteria; Qualitative properties; Fractional differenti...

متن کامل

On the Oscillation of Fractional Differential Equations

In this paper we initiate the oscillation theory for fractional differential equations. Oscillation criteria are obtained for a class of nonlinear fractional differential equations of the form D ax+ f1(t, x) = v(t) + f2(t, x), lim t→a+ J1−q a x(t) = b1, where D a denotes the Riemann-Liouville differential operator of order q, 0 < q ≤ 1. The results are also stated when the Riemann-Liouville dif...

متن کامل

Oscillation of Solutions to Nonlinear Forced Fractional Differential Equations

In this article, we study the oscillation of solutions to a nonlinear forced fractional differential equation. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. Based on a transformation of variables and properties of the modified Riemann-liouville derivative, the fractional differential equation is transformed into a second-order ordinary different...

متن کامل

On boundary value problem for fractional differential equations

In this paper‎, ‎we study the existence of solutions for a‎ ‎ fractional boundary value problem‎. ‎By using critical point theory‎ ‎ and variational methods‎, ‎we give some new criteria to guarantee‎ ‎ that‎ ‎ the problems have at least one solution and infinitely many solutions.

متن کامل

Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects

Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012